University of Illinois researchers quantify drug delivery from nanoparticles inside a cell

For the first time, researchers from the University of Illinois at Urbana-Champaign have demonstrated the successful delivery of drug from nanoparticles can be quantified inside a cell. “We can precisely tell how much drug has been released from the carrier at a given time point,” stated Dipanjan Pan, an assistant professor of bioengineering at Illinois. … Read more…

Structural, regulatory and human error were factors in Washington highway bridge collapse

A key factor in the crash was the curved opening of the bridge. The posted height was the maximum in the center, not the lower curved section above the outer lanes, which the truck hit, which means the databases that shipping companies rely on to plan routes may be inaccurate.

When an important bridge collapsed on Interstate 5 near Mount Vernon, Washington, in 2013, questions were raised about how such a catastrophic failure could occur. A new analysis by a team of civil engineering faculty at the University of Illinois at Urbana-Champaign outlines the many factors that led to the collapse, as well as steps … Read more…

Force triggers gene expression by stretching chromatin

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China has demonstrated that external mechanical force can directly regulate gene expression. The study also identified the pathway that … Read more…

Genome-editing proteins ride a DNA zip line

For gene-editing proteins to be useful in clinical applications, they need to be able to find the specific site they’re supposed to edit among billions of DNA sequences. Using advanced imaging techniques, University of Illinois researchers have found that one class of genome-editing proteins rapidly travels along a strand of DNA like a rider on … Read more…

Method opens a window on how stress and strain affect battery performance

Batteries that charge faster and have greater capacity could boost portable electronic devices and electric cars. A new method to simultaneously test stress and strain in battery electrodes gives researchers a window into the mechanical, electrical and chemical forces within lithium-ion batteries. The method revealed an unexpected point of stress in the charging cycle, which … Read more…

New method for making green LEDs enhances their efficiency and brightness

Researchers at the University of Illinois at Urbana-Champaign have developed a new method for making brighter and more efficient green light-emitting diodes (LEDs). Using an industry-standard semiconductor growth technique, they have created gallium nitride (GaN) cubic crystals grown on a silicon substrate that are capable of producing powerful green light for advanced solid-state lighting. “This … Read more…

Scientists test nanoparticle drug delivery in dogs with osteosarcoma

At the University of Illinois, an engineer teamed up with a veterinarian to test a bone cancer drug delivery system in animals bigger than the standard animal model, the mouse. They chose dogs – mammals closer in size and biology to humans – with naturally occurring bone cancers, which also are a lot like human … Read more…

Measure of age in soil nitrogen could help precision agriculture

What’s good for crops is not always good for the environment. Nitrogen, a key nutrient for plants, can cause problems when it leaches into water supplies. University of Illinois engineers developed a model to calculate the age of nitrogen in corn and soybean fields, which could lead to improved fertilizer application techniques to promote crop … Read more…

Chemical etching method helps transistors stand tall

Smaller and faster has been the trend for electronic devices since the inception of the computer chip, but flat transistors have gotten about as small as physically possible. For researchers pushing for even faster speeds and higher performance, the only way to go is up. University of Illinois researchers have developed a way to etch … Read more…